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Banco de México Universidad Complutense de Madrid

Abstract
The choice of monetary policy is the most important concern of central banks. However,

this choice is always confronted, inter alia, with two relevant aspects of economic policy:
parameter instability and model uncertainty. This paper deals with both types of uncertainty
using a very specific class of models in an optimal control framework. For optimal policy rates
series featuring the first two moments similar to those of the actual nominal interest rates in
Mexico, we show that recursive thick modeling gives a better approximation than recursive
thin modeling. We complement previous work by evaluating the usefulness of both recursive
thick modeling and recursive thin modeling in terms of direction-of-change forecastability.
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Resumen
La decisión de poĺıtica monetaria es la preocupación más importante de los bancos cen-

trales. Sin embargo, esta decisión siempre está confrontada, inter alia, con dos aspectos
relevantes de poĺıtica económica: la inestabilidad paramétrica y la incertidumbre de mod-
elo. Este documento toma en cuenta ambos tipos de incertidumbre y utiliza una clase de
modelos muy espećıfica en un contexto de control óptimo. Para el caso de poĺıticas óptimas
cuyos primeros dos momentos son similares a los de la tasa de interés nominal observada en
México, demostramos que la modelación recursiva gruesa da una mejor aproximación que la
modelación recursiva delgada. Complementamos el trabajo previo en la literatura al evaluar
la utilidad de la modelación recursiva gruesa y la modelación recursiva delgada en términos
de la pronosticabilidad de la dirección de cambio.
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INTRODUCTION 

 
Both academics and policy makers have long been interested in the role played by 

uncertainty on the optimal monetary policy rule. According to Chatfield (1995), there are 

typically three sources of uncertainty in economic models:1 (a) uncertainty about the 

structure of the model, (b) uncertainty about the estimates of the model parameters 

(supposing that we know the structure of the model), and, (c) unexplained random variation 

in observed variables even when we know the structure of the model and the values of the 

model parameters. By using a very specific class of models in an optimal control 

framework, our investigation indicates that the uncertainty about the structure of the model 

plays a significant role in understanding nominal interest rates in Mexico.2 In particular, we 

find a better approximation to the recent historical nominal interest rates in Mexico when 

one succeeds to assess and propagate model uncertainty than when one fails to disseminate 

model uncertainty. For downward movements in nominal interest rates, additional tests 

show that the best forecasts are obtained when we succeed to propagate model uncertainty. 

However, such propagation does not deliver the best forecasts for upward movements. 

 

 This paper is closely related to the literature that deals with unstable parameters and 

uncertainty issues in econometric models. An approach for dealing with parameter 

instability and non-linearity is proposed by Pesaran and Timmermann (1995) in the context 

of small models. They address these problems by using recursive modeling. Favero and 

Milani (2005) use recursive thick modeling for the choice of monetary policy in the U.S. by 

complementing Pesaran and Timmermann´s (1995) work with the thick modeling approach 

proposed by Granger and Jeon (2004). They find that recursive thick modeling delivers 

optimal policy rates that track actual policy rates better than a constant parameter 

specification with no role for model uncertainty. Other types of uncertainty defined by 

Jenkins and Longworth (2002) such as additive shocks, duration of shocks and data are not 

addressed in this paper. Neither do we directly incorporate parameter uncertainty à la 

Brainard (1967) to determine its effect on optimal policy. Söderström (2002) studies the 

effect of uncertainty about the inflation persistence parameter on optimal policy. The other 

                                                 
1  For literature on structural uncertainty see Hodges (1987) and Chatfield (1995). 
2  In what follows, the uncertainty about the structure of the model is defined as “model uncertainty.”   
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approach to deal with model uncertainty is robust control as in Hansen and Sargent (2003), 

and Onatski and Stock (2002). Just like in Favero and Milani (2005), our approach for 

dealing with uncertainty is not an optimizing one. However, this method allows us to have 

a practical approximation to derive the optimal policy under model uncertainty.    

 

In this paper, we analyze optimal monetary policy in Mexico to assess the relevance 

of parameter instability and model uncertainty. Following Favero and Milani (2005), we 

implement recursive thick modeling. Our exercise should be considered of an exploratory 

type since we constraint ourselves to use a very specific class of models, with backward-

looking, only IS and Phillips curves, optimal rules derived under the assumption of constant 

parameters through time, and, as mentioned before, sub-optimal model uncertainty 

treatment. Like Favero and Milani (2005), we generate 2k models in every period by 

making all of the possible combinations from a set of k regressors. This allows us to 

consider the uncertainty in the number of lags with which the relevant variables enter into 

the output gap and core inflation specifications. The Schwarz Bayesian Information 

Criterion (BIC), adjusted R2 and Cross Validation are the three statistical criteria selection 

methods used to rank all of the generated output gap and core inflation models. For the 

models ranked according to the Cross Validation criterion, we use a benchmark model to 

eliminate more models. We obtain arithmetic and weighted averages of all the optimal 

nominal interest rates corresponding to the surviving models. Finally, we use the Diebold 

and Mariano’s (1995) sign test statistic, and also bootstrap replications as well as direction-

of-change test of predictive performance to compare our specific case to the rest of the 

cases. The latter are defined by different combinations of penalty weights in the loss 

function used by policy makers when setting nominal interest rates.            

 

By implementing Diebold and Mariano’s (1995) sign test statistic and using re-

sampling techniques, we find out that, conditional on the specific class of models used, 

policy makers that take into account model uncertainty do the best tracking of the historical 

nominal interest rates in Mexico during the period January 2001-June 2004. In other words, 

recursive thick modeling tracks actual nominal interest rates better than recursive thin 

modeling.  



 3

Moreover, we complement previous work by evaluating the usefulness of both 

recursive thick modeling and recursive thin modeling in terms of direction-of-change 

forecastability. For downward movements in nominal interest rates, additional tests show 

that the best forecasts are obtained when we succeed to propagate model uncertainty. 

However, such propagation does not deliver the best forecasts for upward movements. 

 

The rest of the paper is organized as follows. In Section 1, the set up of a basic 

macroeconomic model is presented. In Section 2, the parameter instability and model 

rankings problems are revealed, the open economy model is presented, and some 

definitions are given. Section 3 presents the optimal monetary policy framework, six 

different policy maker’s combinations of penalty weights, and the procedures that were 

used to reduce the number of models. In Section 4, the optimality results, with and without 

incorporating model uncertainty, are shown for every one of the six different policy 

maker’s combinations of penalty weights. Section 5 assesses the generalization 

performance of models and eliminates those not capable of outperforming a benchmark 

model. Section 6 statistically compares the performance of a specific optimality result to 

those from other combinations of penalty weights. It shows direction-of-change 

forecastability outcomes and the effect of test-set class distributions on mean square errors. 

Finally, Section 7 concludes. 

 

1. BASIC MACROECONOMIC MODEL 

 

Our basic model is a modified version of the dynamic aggregate supply-aggregate demand 

framework used by Rudebusch and Svensson (1999). The original framework was modified 

to include open economy variables. By no means, the basic model should be viewed as the 

best model. We tried to be as close as possible to the model specifications in Rudebusch 

and Svensson (1999) when choosing the regressors. The dynamic homogeneity property is 

imposed on the Phillips curve for core inflation, which is similar to the one used by 
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Contreras and García (2002).3 The IS curve is similar to the one used by Ball (1999). The 

equations used are: 

  
πεββπβπ ttt

c
t

c
t eudex +−++= −− inf)1( 12211                                                             (1) 

 
x
ttt

us
ttt rltcrxxx εγγγγγ +++++= −−− 14312110                                                          (2) 

 
 
Equation (1) is an open economy Phillips curve where core inflation c

tπ  is affected by its 

own lag c
t 1−π , the output gap second lag 2−tx , and the sum of the contemporaneous nominal 

exchange rate percentage depreciation and the external inflation teude inf . We impose the 

dynamic homogeneity condition on Equation (1) to guarantee long-run inflation neutrality 

on output.4  

 

Equation (2) is an open economy IS equation where the output gap tx  is affected by 

its own lag 1−tx , the lag of the U.S. output gap us
tx 1− , the lag of the ex-post real interest rate 

1−tr , and the contemporaneous value of the natural log of the real exchange rate tltcr . πε t  

and x
tε  are the respective white noise shocks. We use monthly data for core inflation, 

output gap, the real exchange rate, and the ex-post real interest rate. 

 

Initially, it is assumed that this single model contains the correct representation of 

the economy, and that the model parameters are constant over time. 

 

 

 

                                                 
3  As opposed to the Phillips curve used by those authors, ours does not have a forward-looking inflation 

component. The reasons for not having included forward-looking variables will be given in the next 
sections.  

4  Data was obtained from Banco de México. The output gaps are percentage deviations of the seasonal 
adjusted Index of General Economic Activity (IGAE) and the seasonal adjusted U.S. Industrial 
Production Index from their respective output potential. The output potentials represent an average of a 
linear trend and a Hodrick-Prescott filter. The log of the real exchange rate is the natural logarithm of the 
U.S.-Mexico real exchange rate index (1997 = 1.0). The monthly nominal interest rate was obtained from 
the 28-day Mexican government T-bill (CETES). 
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2. PARAMETER INSTABILITY 

 
Using monthly data for the Mexican economy over the period 1996:09-2004:06, the 

estimated equations are as follows:5 

 
πεππ ttt

c
t

c
t eudex ++−= −− inf019446.0001480.0980553.0 21     (3) 

                               (0.0000)                         (0.8593) 
 

X
ttt

us
ttt rltcrxxx ε+−+++= −−− 111 036376.0042619.0336692.0528036.0221060.0  (4)

          (0.1773)             (0.0000)                        (0.0000)                       (0.9552)                         (0.0385) 
 
 
To evaluate the potential parameter instability we re-estimate each equation by considering 

two different sub-samples. For the core inflation equation, the sub-samples estimation 

yields: 

 
 
1996:10 – 1999:05 πεππ ttt

c
t

c
t eudex ++−= −− inf049148.0002188.0950851.0 21   (5) 

                                                                       (0.0000)                          (0.9394)  
 
1999:06 – 2004:06 πεππ ttt

c
t

c
t eudex +−−= −− inf008710.0006685.0008711.1 21   (6) 

                                                                       (0.0000)                          (0.2092)  
 
 
For the output gap equation, the sub-samples estimation yields: 
 
1996:09 – 1999:12 
 
           X

ttt
us
ttt rltcrxxx ε+−−++= −−− 111 030888.0893024.2069202.0588008.0301036.0    (7)

  (0.1675)               (0.0001)                      (0.5394)                      (0.1731)                           (0.2263) 
 
2000:01 – 2004:06 
 
           X

ttt
us
ttt rltcrxxx ε++−++−= −−− 111 007044.0185126.4620912.0115780.0752512.0 (8)

    (0.0355)               (0.3548)                      (0.0000)                       (0.0150)                         (0.7830)  
  
 
We take these results as an indication of parameter instability of economic relevance. 

Performing a Chow test of the null of parameter stability on the output gap equation, for 
                                                 
5  Values in parenthesis are p-values. We show only two p-values in equations (3), (5), and (6) because we 

impose the dynamic homogeneity property on the nominal explanatory variables. 
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2000:01 we reject the hypothesis of no breakpoint at the 5% significance level. Doing the 

same for the core inflation equation, for 1999:06 we also reject the hypothesis of no 

breakpoint at the 5% significance level. However, since the variances of the residuals for 

each of the sub-samples are significantly different, a Chow test is no longer satisfactory. 

Consequently, we perform a Wald test, as suggested by Watt (1979) and Honda (1982), 

which provides conclusive evidence against the stability of core inflation: we reject the 

hypothesis of equal parameters at the 5% significance level.6 

 

Subsequent estimations are obtained by using a fixed-sized rolling window and 

taking into account the dynamic homogeneity property as well as some parameters 

restrictions which reflect some assumptions about long-term values for the real interest rate 

and the real exchange rate. The latter implies that all models share the same steady state 

properties. The window size does not come from an optimization procedure and it is set 

equal to fifty two observations. We use monthly data from September 1996 to May 2004.7 

The first period estimations are obtained with data from September 1996 to December 

2000. When using the fixed-sized rolling window, we obtain all the optimal nominal 

interest rates implied by each model for the forty two periods starting January 2001 and 

ending June 2004. These optimal nominal interest rates represent one-step ahead forecasts 

since we are mimicking a policy maker that minimizes a standard quadratic loss function 

subject to specifications estimated with all available data up to that point.   

 
The technical complications of allowing a forward-looking component in the real 

exchange rate equation makes it unwieldy to consider uncertainty on this particular 

specification.8 In other words, estimating models derived from all possible combinations of 

k regressors could be cumbersome when using GMM for specifications with forward-

looking variables. For the same reason, we only use IS and Phillips curves that are not 

hybrid.    

                                                 
6  The evidence against the stability of core inflation probably reflects the disinflation period of the late 

nineties. Indeed, Chiquiar, Noriega and Ramos-Francia (2006) find a change in the persistence of core 
inflation in April 2001.   

7  The models we use do not allow us to capture the disinflation period of the late nineties. Consequently, 
we did not rule out models on the basis of coefficients with the wrong sign according to economic theory.  

8  We decided to use an interest parity condition with delayed overshooting for the real exchange rate 
similar to the one in Eichenbaum and Evans (1995), and Gourinchas and Tornell (1996).  
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Recursive modeling is implemented by considering the following specifications: 

 
,1

,
1
,11 ititi

c
t

c
t u+′+= − Xβπβπ                               (9) 

,2
,

2
,110 itititt uxx +′++= − Xγγγ                             (10) 

 
where 1

,itX , 2
,itX are ( 1×ik ) vectors of regressors obtained as a subset of the base set of 

regressors 1
tX , 2

tX   

 
c
tt 2

1 [ −=
′

πX   c
t 3−π   tx   1−tx   2−tx   3−tx   tdeinfeu   1deinfeu −t   2deinfeu −t   3deinfeu −t ] 

 

2
2 [ −=
′

tt xX   3−tx   us
tx 1−   us

tx 2−   tltcr   1ltcr −t   1−tr   2−tr   3−tr   4−tr ]   
 

 
where ii uk e′= , e  is a )1( ×k vector of ones, and iu  is a )1( ×k  selection vector composed 

of zeros and ones, where a one in its j-th element means that the j-th regressor is included in 

the model. All variables are defined as above and ttt ir π12−=  is expressed in annual 

percentage. The first lag of each dependent variable is always included in all specifications. 

Uncertainty on the specification of lags implies that the policy maker searches over 210 =  

1024 specifications  to select the relevant output gap and core inflation equations in each 

period.9 The selection criterion is based on adjusted R2, Schwarz’s Bayesian Information 

Criterion (BIC) or Cross Validation. The formula for BIC is obtained from Bossaerts and 

Hillion (1999).  

 

The rest of the specifications for other variables is obtained from Roldán-Peña (2005), and 

given by the following: 

( ) t
t

us
te

ttt v
rr

ltcrltcrltcr +
−

++= +− 1200
)(

)( 1211 αα                 (11) 

t
nc
t

nc
t wdd ++= −110 ππ                   (12) 

nc
t

c
tt πλλππ )1( −+=                    (13) 

                                                 
9  Since core inflation reflects the behavior of inflation in the long run, we did not analyze the uncertainty in 

the lags to be included in the non-core inflation specification.   
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us
t t t tde dtcrπ π+ = +                    (14) 

and the VAR(2) system for the exogenous external variables: 

t
us
t

us
t

us
t

us
t

us
t

us
t

us
t iaiaxaxaaaa ϑπππ +++++++= −−−−−− 2615241322110              (15) 

t
us
t

us
t

us
t

us
t

us
t

us
t

us
t sibibxbxbbbbx +++++++= −−−−−− 2615241322110 ππ              (16) 

 t
us
t

us
t

us
t

us
t

us
t

us
t

us
t zicicxcxcccci +++++++= −−−−−− 2615241322110 ππ              (17) 

 

Equations (11)-(14) represent the dynamic specifications for the real exchange rate, non-

core monthly inflation, monthly headline inflation as a weighted sum of its core and non-

core components, and the purchasing power parity condition, respectively. The VAR(2) 

system represents the dynamics for U.S. monthly headline inflation, U.S. output gap, and 

U.S. nominal interest rates obtained from the 3-month T-bill. See Roldán-Peña (2005) for 

estimation of Equations (11)-(17). It is important to acknowledge that the system equations 

presented here might not necessarily be capturing the transmission mechanism of monetary 

policy in Mexico.10    

 

We take into consideration only 960 models from all possible combinations of 10 

regressors for both core inflation and output gap equations. This is the case since the 26 

models resulting from not having variables rt-1, rt-2, rt-3 and rt-4 are discarded as possible 

specifications for the output gap. Similarly, the 26 models resulting from not having 

variables xt, xt-1, xt-2 and xt-3  are eliminated from the set of possible specifications for core 

inflation. This is done in order to take into account only models that make monetary policy 

relevant to control inflation.    

 

Finally, we combine the output gap and core inflation specifications according to 

their rankings given by either BIC or adjusted R2 or Cross Validation– i.e. the best output 

gap specification with the best core inflation specification, the second best output gap 

specification with the second best core inflation specification, etc. In general, those criteria 

will deliver different rankings and this situation makes a case for all specifications. Even 

though the uncertainty considered relates only to the dynamic structure of the economy 

                                                 
10  See Gaytán-González and González-García (2006) to learn about changes in the transmission mechanism 

of monetary policy in Mexico.   
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(thus omitting other factors that may influence uncertainty), the advantage of this approach 

is that it allows us to account for the number of lags with which monetary policy affects the 

economy.  

 

Having estimated all possible models, a statistical criterion is used to select the best 

model in each period (recursive thin modeling). Alternatively, the information from the 

whole set of models can be used in each period (recursive thick modeling).11 

 

Thin modeling discards all but one model for each dependent variable, leaving out 

of the decision-making process the information from (2k-1)*2 models,  since the uncertainty 

about the number of lags applies only to the output gap and to core inflation specifications. 

Although the chosen model is the best according to some criterion, exclusively relying on it 

means that the policy maker does not consider the uncertainty stemming from both unstable 

parameters and model specification.  

 

One problem about thin modeling pointed out by Favero and Milani (2005) has to 

do with the lack of match between the ranking of models obtained from different statistical 

criteria. Figures 1 and 2 show scatter plots of models ranking according to adjusted R2 and 

BIC criteria for all 960 specifications of core inflation and output gap, respectively. 

 

Figures 1 and 2 show that the lack of match between the ranking of models also 

arises. In our case, for instance, the best output gap model according to adjusted R2 (BIC) is 

ranked in 17th (162th) place by the BIC (adjusted R2) criterion. As for core inflation, the best 

model according to adjusted R2 coincides with the best one ranked by the BIC criterion. 

However, any given selection criterion is prone to produce small, statistically insignificant 

                                                 
11  Recursive thick modeling involves estimating all 960 models and taking only the survivors of them into 

account to deal with the problem of model uncertainty at each point in time (on average, 720 models were 
discarded every month). Instead of choosing just one model, we use two averaging techniques to include 
the information of all models. We calculate an average of models with equal weights for each model, and 
a weighted average of models, in which weights vary according to the BIC, the adjusted R2 or the Cross 
Validation criterion. That is, under this last averaging technique, the best models are those with larger 
weights.     
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differences among the best models. Dell’Aquila and Ronchetti (2004) find out that ranking 

is unreliable in the sense that the set of undistinguishable models can be large.12  

 

Consequently, deciding which model to choose becomes hard. One way to evaluate 

the importance of this choice consists of finding how robust key parameters are across both 

time and the 960 specifications. Figures 3, 4, and 5 show the variation of long-run 

coefficients for the real interest rate, the U.S. output gap, and the imported inflation across 

both time and specifications.13 The dotted line and the solid line placed on the grey area 

indicate the average of the long-run coefficients across the 960 models and the long-run 

coefficient given by the best model, respectively.  

   

In the next section we will find out how relevant the range for those coefficients is 

to optimal policy.   

 
 
3. OPTIMAL MONETARY POLICY 
 

To assess the impact of recursive thick modeling, we calculate the optimal nominal interest 

rate paths based on the following model choices: 

 
a) Recursive thin modeling: the model with the best adjusted R2 in each period. 

b) Recursive thin modeling: the model with the best BIC in each period. 

c) Recursive thin modeling: the best model according to Cross Validation in each 

period. 

d) Recursive thick modeling: the average (simple or weighted) optimal monetary policy 

derived from all specifications for each statistical criterion.  

 
The policy maker minimizes an intertemporal loss function of the form: 
 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

Μ−+−+−−= ∑
∞

=
+−+++

0

2
1

22* .)(])1()12()[1(
i

itititit
i

tt iiyEL φαππαφβ                        (18) 

                                                 
12  Ranking of models poses some difficulties for the reasons aforementioned. The ranking of parameters has 

been done in other contexts. See Kosowski, Timmermann, White and Wenders (2006). 
13  Long-run coefficients are obtained by adding all coefficients of the corresponding variable for each 

specification.  
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The period loss function is quadratic in the deviations of output and inflation from their 

targets, and it includes a penalty for the policy instrument’s variability.14 It is worth 

mentioning that this particular loss function is of a reduced form type, not derived from 

microfoundations. The loss function weight α  represents the relative weight of inflation 

stabilization to output gap stabilization (the sum of the weights is normalized to one). 

Additionally, the other weight φ  symbolizes the relative weight of interest rate smoothing 

to stabilization of inflation and output (also normalized to one). The policy maker 

minimization problem is conditional on set M, which consists of 2k specifications.  

 

We proceed to solve the optimization problem under different assumptions 

regarding the loss function weights in order to evaluate which alternative delivers the best 

performance in tracking the actual nominal interest rate. We calculate the optimal monetary 

policy rules implied by recursive thin and recursive thick modeling under all criteria and 

averages for six alternative combinations of loss function weights: 

 

 

CASE 1: α =0.5, φ =0.05.  

CASE 2: α =0.5, φ =0.2.  

CASE 3: α =0.5, φ =0.3.  

CASE 4: α =0.7, φ =0.3. 

CASE 5: α =0.9, φ =0.1. 

CASE 6: α =1.0, φ =0.05. 

 
Solving an optimal control with the loss function given by Equation (18) requires 

expressing Equations (9)-(17) with the corresponding algebraic transformations in state-

space form. By following Favero and Milani´s (2005) representation, we have 

 

1 1 1 1
j j

t t t t t ti+ + + += + +X A X B ε                (19) 

                                                 
14  We decided to annualize monthly inflation in a linear way since the target for headline inflation 

represents the desired change in the consumer price index over a twelve-month period.  
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where subscript t = 1, 2, 3,…..42  indicates the observations from 2001:01 to 2004:06 while 

superscript j = 1, 2, 3,....960 denotes the model used.  

The state space vector is: 

 

[ ,,,,,,,,,,,,,,,,,,,1´ 1
1

1211111121111
us
t

us
tttttttt

nc
t

c
t

c
t

c
ttttttt xxultcrltcrltcrxxx ++−−−++−+−−+

∗
++ = πππππππππX

            ]e
ttttt

us
t

us
t

us
t

us
tttttt ltcrvzsiiwuiii 11111111

2
121 ,,,,,,,,,,,,, +++++++++−− ϕππ  

 

The solution algorithm to the minimization problem of the loss function represented by 

Equation (18) and subject to Equations (9)-(17) is the discretion solution in Söderlind 

(1999). Clarida, Galí and Gertler (1999) indicate that the discretion solution matches best 

with reality because, in practice, no major central bank makes any binding commitment 

over the course of its future monetary policy. Even though there could be social gains from 

commitment as mentioned by Clarida, Galí and Gertler (1999), our explicit consideration of 

both parameter and model uncertainty strengthens the case for using the discretion solution.  

 

The implied optimal policy rule is: 

 
j j

t t ti = f X                        (20) 

 

where  j
tf  is a 960 x 42 x 33 matrix.  

 

Recursive thin modeling consists of estimating all possible models in every time 

period as new information comes along and old information is discarded. From our set of 

960 estimated models, we choose the best one according to three different criteria: BIC, 

adjusted R2 and Cross Validation. This procedure is adequate for policy makers that obtain 

data in real time and learn slowly about structural breaks. Optimization is performed for 

every period, yet parameters are subject to change in the future, making this a sub-optimal 

strategy for policy makers.15 

 

                                                 
15  This is the case since the optimal solution is computed assuming constant parameters through time.  
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Following Norman and Jung (1980), we used the concept of target controllability in 

order to eliminate models. The identification of optimal rates that were not sensitive to 

changes in parameters α  and/or φ  allowed us to discard such models.16 The surviving 

models were of rank 2 – i.e. the number of state variables to be controlled in the loss 

function.  

 

We also tried to eliminate more models by: (1) determining if the dynamic 

homogeneity property linear restriction was valid for the core inflation estimation, and, (2) 

simulating models with random explanatory variables in the spirit of Cooper and Gulen’s 

(2006) strategy. As for the former, when using a confidence interval greater than 1%, all 

models were eliminated for some periods. The 1% confidence interval basically rejected no 

model for every period.  

 

In an attempt to eliminate irrelevant models, we followed Cooper and Gulen’s 

(2006) strategy by using non-repeating seeds to generate ten random N(0,1) predictive 

variables. The purpose of these simulations was to find out whether noise itself was capable 

of delivering better results than some of the models used.17 We computed both the adjusted 

R-squared and the BIC criteria for all competing regression specifications in the presence 

of these random variables. We ran the simulation ten times to obtain the maximum 

(minimum) adjusted R-squared (BIC). However, we failed to eliminate specifications from 

our analysis as all competing regression specifications, during the entire rolling window 

analysis, outperformed those specifications generated in the presence of the random 

variables. We also simulated ten random ( , )i iN x σ  predictive variables, where 

 and i ix σ denote the mean and standard deviation of real predictor i. Nonetheless, we 

achieved the same result. 

 

                                                 
16  From the point of view of a control system, it would not make sense to keep models that always deliver 

the same optimal rate regardless of the loss function weights.  
17  The Cooper and Gulen strategy has the important limitation of assuming independent normal 

distributions for the explanatory random variables. Simulations of multivariate non-normal distributions 
could be obtained from the generalized lambda distribution. See Headrick and Mugdadi (2006) for more 
on this theme.  
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Table 1 reports the inclusion percentage of every explanatory variable used for both 

the best output gap and core inflation specifications through time.  

 

Table 1 shows that the set of variables belonging to the best specification for both 

output gap and core inflation is changing through time. It is also noticeable that the first lag 

of the U.S. output gap us
tx 1−   is the only variable belonging to the generating set of models 

that is always part of the best output gap specification.18 Moreover, the set of variables 

being part of the best specification for both the output gap and core inflation is a function of 

the statistical criterion.  

 

The fact that we use a fixed-sized rolling window makes it possible to have a 

derived optimal policy that responds to either different coefficients when the same 

specification arises or different specifications when the set of inclusion variables changes.19       

     

4. OPTIMALITY RESULTS VS. ACTUAL NOMINAL INTEREST RATES 
 

For each combination of loss function weights, we obtain the nominal interest rates implied 

by the optimal policy rule, and compute their mean and standard deviation. Additionally, 

we compare the optimal nominal interest rates to the actual nominal interest rates via the 

Mean Square Error (MSE). EW and WA stand for Equal Weighted and Weighted Average 

committees, respectively.20 The results for the BIC criterion are shown in Table 2.  

 
Table 2 shows that under thick modeling and loss function weights 3.0,5.0 == φα , 

the average of all models with equal weights gives us the best adjustment to the actual data 

in terms of mean square errors.21 The results for the 2R  criterion are shown in Table 3. 

 
                                                 
18  The other variables exhibiting a 100% inclusion appearance in the best model are always included by the 

policy maker.  
19  Optimal policies are a function of both the loss function weights and the dynamic structure of the 

economy.   
20  In what follows, a committee consists of an average of all nominal interest rates optimally derived from 

all models.  
21  Since we did not rule out models on the basis of coefficients with the wrong sign according to economic 

theory, thin modeling might allow them in some periods. This could be another reason for favoring thick 
modeling over thin modeling. 
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Table 3 shows that under thick modeling and loss function weights 3.0,5.0 == φα , 

the weighted average of all models gives us the best adjustment to the actual data in terms 

of mean square errors. It is important to mention that the simple average of optimal nominal 

interest rates here is different from the results obtained for the BIC criterion. This occurs 

because the combinations of output gap and core inflation specifications are not the same.22  

 

5. ASSESING THE GENERALIZATION PERFORMANCE OF COMPETING  

    REGRESSION SPECIFICATIONS 

 

It is widely acknowledged that statistical models are built either to predict what the 

responses to future values of explanatory variables are going to be or to extract useful 

information about the true data-generating process. Thus far, we have applied two 

techniques to gauge the in-sample prediction error: the Schwarz criterion and the adjusted 
2R . In this section, we apply a simple and broadly used method for estimating the 

generalization performance of each competing regression specification:23 the r-fold cross-

validation of Breiman, Friedman, Olshen, and Stone (1984).  

  

 To understand r-fold cross-validation, suppose that the sample size n can be written 

as n rd= , where r and d are integers. Let us divide the data set instances {1,..., }n  into r 

subgroups 1{ ,..., }rs s which are mutually exclusive.24 Without loss of generality, suppose 

that the division is: 

} 21

1,..., , 1,..., 2 ,..., ( 1) 1,..., .
rs ss

d d d r d rd+ − +
64748 6447448

 

 

 

 

Then the cross-validation estimate of generalization performance for the mth model is, 

                                                 
22  Optimal nominal interest rates are a function of combinations of output gap and core inflation 

specifications, which vary according to the statistical criterion.  
23  Hastie et al. (2001, p. 193) indicate that the generalization performance of a statistical model “relates to 

its prediction capabilities on independent test data.”   
24  Breiman et al. (1984) suggest that the partition should be random to evade possible biases.  
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               ( )* ˆCV , ( )   for  1,..., .i

i i

s
m s sL y f x i r−= =                            (21) 

 

where ˆ ( )isf − ⋅ is the estimated model computed with the is  subgroup of data removed and 

( )L ⋅ represents a forecasting loss function. It is worth mentioning that the implementation 

of cross-validation requires independence among the error terms of estimations. For the 

sake of convenience, estimations were done with OLS. Consequently, either using the 

whole sample or only some subgroups for the estimation would still leave us with the same 

dependency problem.    

  

 In this paper, we use a forecasting loss function based on relative errors to eliminate 

models not capable of outperforming a benchmark model. In particular, we use the median 

relative absolute error (medRAE) advocated by Armstrong and Collopy (1992). They 

recommended it after judging different error measures on reliability, construct validity, 

sensitivity to small changes, protection against outliers, and their relationship to decision 

making. To calculate the relative absolute error for the mth model, we simply divide the 

absolute error of the estimated function ˆ ( )is
j jy f x−−  by the absolute error of a benchmark 

j jy rw−  for 1 2 and , ,..., .i i rj s s s s s∈ = , where jrw  is the prediction of the random walk 

model (without drift) for the response variable. Robinson, Stone and van Zyl (2003) use the 

random walk as an alternative benchmark model for forecasting inflation. For the sake of 

consistency, we use the random walk model as an alternative benchmark model for 

forecasting the output gap.25 Then we obtain the median value of the relative absolute 

errors produced by all the subgroups.  

   

 We eliminated from our analysis all competing specifications that could not 

outperform the benchmark –i.e. those whose medRAE was greater than one. It is worth 

                                                 
25  Arguably, it would have been more appropriate to use a naive benchmark model like the zero mean for 

forecasting the output gap.  
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mentioning that, on average, 720 models were discarded per period.26 The survivors were 

ranked according to their generalization performance. Note that our final models were 

estimated with the data contained in all subgroups.  

 

Table 4 shows the results for the six different combinations of loss function weights 

using the Cross Validation criterion. When the loss function weights are 3.0,5.0 == φα , 

Table 4 shows that the average of all models with equal weights, and the weighted average 

give the best adjustment to the actual data in terms of mean square errors.   

 

6.1. DIEBOLD AND MARIANO’S SIGN TEST STATISTIC AND BOOTSTRAP  

       REPLICATIONS  

 

To formally test whether or not different cases of loss function weights contain information 

that it is not present in any other case, we implement Diebold and Mariano’s (1995) sign 

test statistic. We set the equally weighted committee with 0.5 and 0.3α φ= =  from the 

cross-validation criterion as our specific case. Let mp be the vector of predictions of the 

case of loss function weights m, t be the vector of actual interest rates, and specificp be the 

vector of predictions of the specific case mentioned above. Then, ( )m me t p= −  and 

( )specific specifice t p= −  denote the corresponding error vectors. The sign test statistic {S} is 

defined for the case of policy parameter preference m by:   

 

                   [ ]∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −>=

n

j

a

jmm NdI
n

S
1

, )1,0(~
2
102                                                 (22) 

  

where ,m jd  is the so-called loss differential at time j, 2 2
, , , ,m j specific j m jd e e= −  I is an indicator 

function, and where ~ (0,1)
a

N  means asymptotically distributed as a standard normal. We 

compute the S statistic for all pairwise comparisons between the specific case and the 

                                                 
26  It would be interesting to find which specifications survive by determining their relative performance 

when considering all periods.   
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different cases of loss function weights, and show the results in Table 5 (BM stands for 

Best Model or recursive thin modeling).  

 

Significant and negative (positive) values for S indicate a significant difference 

between the two forecasting errors, which imply a better accuracy of the specific (m) loss 

function weights. Table 5 exhibits the S statistics. Arguably, for optimal policy rates series 

featuring the first two moments similar to those of the actual nominal interest rates in 

Mexico, recursive thick modeling gives a better approximation than recursive thin 

modeling. 

 

Another possibility to test the null hypothesis that there is no qualitative difference 

between forecasts from any two models is to use re-sampling techniques. Re-sampling 

techniques are computer-intensive statistical tools for estimating the distribution of a 

parameter that in other ways would be difficult to obtain.27 The traditional re-sampling 

algorithm to compute the difference between two mean square prediction errors consists of 

the following steps: (1) randomly draw observations with replacement from a sample of 

size n = 42 produced by the specific aforementioned loss function weights and obtain its 

mean square prediction error; (2) using the same random rows from step 1, calculate the 

mean square prediction error for a different case of loss function weights; (3) compute the 

difference between the MSEs; and, (4) repeat steps 1 and 2 five thousand times to obtain a 

set of bootstrap replications. 

 

Table 5 also shows the p-value for each different case of loss function weights. The 

p-value represents the proportion of bootstrap estimates in which the difference between the 

MSEs is greater than zero. Thus, low significant p-values indicate that the MSE of loss 

function weights m is lower than the MSE of the specific case. Arguably, Table 5 shows 

that none of the competing loss function weights outperform the specific case. This result is 

consistent with Diebold and Mariano’s (1995) sign test statistic. However, these results do 

not rule out that other loss function weights cannot be outperformed by other specific cases. 

Favero and Milani (2005) point out that model uncertainty and parameter instability imply 
                                                 
27  Re-sampling techniques are described in more technical detail in Hall (1992), and Davison and Hinkley 

(1997).  
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a very low precision in the observational equivalence of optimal policy rates generated by 

different loss function weights.   

 

6.2. DIRECTION-OF-CHANGE FORECASTABILITY 

 

Thus far, the analysis exhibits evidence supporting the use, for monetary policy purposes, 

of combinations of nominal interest rates optimally derived from all models. Such 

combinations or committees propagate model uncertainty and simultaneously achieve a 

higher generalization performance than that from a naive benchmark. In a related study, 

Favero and Milani (2005) confirm the usefulness of propagating model uncertainty in 

monetary policy. However, they do not evaluate its usefulness in terms of direction-of-

change forecastability. Are those combinations of models that propagate model uncertainty 

helping us understand the ups and downs of the nominal interest rate?    

 

A good model for monetary policy produces out-of-sample forecasts satisfying 

several important properties, including high sensitivity and specificity. Sensitivity of a 

model is defined as the proportion of truly up-movement cases that have a predicted 

nominal interest rate change higher than zero. The specificity represents the proportion of 

truly down-movements cases whose predicted nominal interest rate change is lower or 

equal to zero. 

 

More formally, if ,1 ,,...,o o nx x are the predictions for a group of n down-movement 

cases (our n corresponds to twenty-four in the sample January 2001-June 2004) and 

1,1 1,,..., mx x  are the forecasts for a group of m up-movement cases (our m corresponds to 

seventeen in the sample January 2001-June 2004), and, to keep the analysis simple, higher 

predictions indicate a higher probability of an up-movement. For a given cut-off c (our c 

corresponds to zero), the specificity is 0( )P X c≤  where 0X  is a random observation from 

the down-movement cases, whereas the sensitivity is 1( )P X c>  where 1X  is a random 

observation from the up-movement cases. A naive estimator of the variance of the 
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estimated sensitivity 
∧

Se  and of the estimated specificity 
∧

Sp  (not reported) may be given 

by:  

                                         mSeSeSeVar /1 ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ ∧∧
∧

∧

                                           (23) 

                                        nSpSpSpVar /1 ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ ∧∧
∧

∧

                                            (24) 

  

The sensitivity and specificity results are also shown in Table 5. For our test-set, the 

models that achieved the statistically highest accuracy for the downs of the nominal interest 

rates were the committees selected via cross-validation with 0.5 and 0.3α φ= = , implying 

that recursive thick modeling delivered the best forecasts. One can easily compute the 

significance of the estimated sensitivity and specificity via a 95% confidence interval—i.e. 
∧

∧∧
∧

∧∧

⎟
⎠
⎞

⎜
⎝
⎛⋅+〈〈⎟

⎠
⎞

⎜
⎝
⎛⋅− SeVarSeSeSeVarSe 96.196.1 . If the 95% confidence interval does not include 

0.50, then the estimated sensitivity or specificity is statistical different from 0.50. That is, 

the model discriminates either positive or negative movements better than random.   

 

The models that achieved the highest accuracy for the ups of the nominal interest 

rates were those models with both  5.0=α and  05.0=φ , and with 0.9 and 0.1α φ= = . 

Note, however, that such models did not propagate model uncertainty. That is, optimal 

monetary policy rules, in terms of up-movement predictability, were obtained via a single 

model and not with a weighted committee (or ensemble). Metz (1993) indicates that one 

should select the model with the highest lower limit when either sensitivity or specificity 

are the same. In our case, the model with 0.9 and 0.1α φ= =  produces specificity levels 

larger than those corresponding to the model with  5.0=α and  05.0=φ .  

 

To further assess how different test-set distributions affect the MSE criterion for 

those models selected via the cross-validation criterion, we evaluate the following test-set 

distributions (expressed as percentages of up movements): 10%, 25%, 50%, 75%, and 90%. 
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To ensure that all experiments have the same test-set size, no matter the class distribution, 

the test-set size is made equal to the total number of up movements. Each test set is then 

formed by randomly sampling from the original test-set data, without replacement, such 

that the desired class distribution is achieved. To enhance our ability to identify differences 

in predictive performance with respect to changes in test-set class distribution, the 

experiments are based on a thousand runs. The results are shown in Table 6, where we 

report the effect of test-set class distribution on the MSE. The first two columns in Table 6 

specify the loss function weights as well as the model (BM stands for Best Model or 

recursive thin modeling). The next five columns present the average MSE for the five fixed 

class distributions. The values reported in the main rows are the actual mean square error 

averages, and the numbers in parenthesis are the standard errors.     

 

The intuition behind varying the test-set class distribution is that a good model for 

generating monetary policy rules should generate desirable properties when predicting out-

of-sample regardless of the test-set distribution. Evidently, this is not the case. Table 6 

shows models that exhibit a larger percentage of error when forecasting more negative 

changes in nominal interest rates with the exception of equally and unequally weighted 

committees for both 0.5 and 0.3α φ= =  and 0.5 and 0.05α φ= = . Note also the 

consistency of the results reported in Table 6 with those reported in Table 5. For example, 

the equally weighted model with 0.5 and 0.3α φ= =  has a relatively high specificity. 

Therefore, it is expected that when the proportion of down-movement increases in the test-

set, the MSE decreases. Table 6 confirms this case. As more down-movements are in the 

test-set, the MSE decreases. The opposite happens for the best model with 

0.9 and 0.1α φ= = , which achieved high sensitivity. As more down-movements are in the 

test-set, its MSE increases considerably.    

 

By using the two-sided test of the null that the population mean difference is zero 

against the alternative that the population mean difference is not zero, we find that for 

higher proportions of up-movements, the model with 0.9 and 0.1α φ= =  produces MSEs 

smaller than those corresponding to the model with  5.0=α and  05.0=φ . Consequently, 
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this result confirms that the model with 0.9 and 0.1α φ= =  works better to understand the 

positive movements than the model with 0.5 and 0.05α φ= =  .  

 

7. CONCLUSIONS 

 

This paper finds that the uncertainty about the structure of the model plays a significant role 

in understanding nominal interest rates in Mexico. Particularly, we find a better 

approximation to the recent historical nominal interest rates when using a very specific 

class of models in an optimal control framework. This occurs when we succeed to assess 

and propagate model uncertainty rather than failing to disseminate it. Additionally, our tests 

show that recursive thick modeling proves better at forecasting the downs of nominal 

interest rates. However, they suggest that the propagation of model uncertainty does not 

deliver the best forecasts for the ups of nominal interest rates. 
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Output gap Core inflation
Variable Adjusted R-squared BIC Variable Adjusted R-squared BIC
Constant 100.00 100.00 Constant 0.00 0.00

100.00 100.00 100.00 100.00
16.67 0.00 40.48 11.90
76.19 26.19 88.10 80.95
100.00 100.00 16.67 40.48
4.76 0.00 26.19 11.90
16.67 0.00 50.00 38.10
33.33 2.38 35.71 9.52
90.48 69.05 88.10 78.57
9.52 2.38 97.62 45.24
69.05 30.95 16.67 9.52
14.29 0.00 52.38 0.00

Table 1. Percentage of appearances of the explanatory variables in the best model through time.
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Loss Function CETES

EW WA 28-day rate
Mean 

Std
MSE

Mean 
Std 
MSE

Mean 
Std 
MSE 

Mean 
Std 
MSE

7.86 
4.65 

9.94

11.35 
5.69 
41.17

8.63 
4.20 

6.77

7.89 
3.25 

0

6.99 
4.58 

8.05

8.34 
3.48 

2.30

7.53 
4.18 

4.19

7.89 
3.25 

0

7.04 
4.37 

6.09

8.00 
3.56 

1.68

7.50 
4.06 

3.55

7.89 
3.25 

0

7.07 
4.44 

7.07

8.13
3.57 

1.84

7.52 
4.11 

4.03

7.89 
3.25 

0

7.79 
4.63 

9.63

10.20 
4.12 
14.62

8.24 
4.10 

5.48

7.89 
3.25 

0

8.70 
4.43 
12.84

12.73 
6.87 
67.30

9.44 
3.70 

8.10

7.89 
3.25 

0

Table 2 - Optimal and actual 28-day CETES rate paths: BIC descriptive statistics 
Thick Recursive 

Thin 
2

1
2 2 * )(] )1 ()()[1 ( −−+−+− −= ttt iiy L φα π π α φ 

05 . 0 ,5 . 0 == φ α 

2 . 0 , 5 . 0 == φ α 

3 . 0 , 7 . 0 = = φ α 

1 . 0 , 9 . 0 = = φ α 

05. 0 , 0 . 1 = = φ α 

3 . 0 ,5 . 0 == φ α 
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Loss Function CETES

EW WA 28-day rate
Mean    

Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

8.84     
4.17      

9.07

11.02    
5.03      
35.77

11.00    
5.02      
35.29

7.89     
3.25      

0

7.36     
5.06      

9.48

8.10     
3.69      

5.22

8.46     
3.22      

2.87

7.89     
3.25      

0

7.46     
4.80      

7.37

7.74     
3.79      

4.15

8.09     
3.38      

1.85

7.89     
3.25      

0

7.45     
4.96      

8.55 

8.12     
3.57      

3.11

8.31     
3.35      

2.08

7.89     
3.25      

0

8.48     
5.08      
11.41

10.34    
4.27      
20.72

10.33    
4.27      
20.46

7.89     
3.25      

0

9.71     
4.93      
16.37

12.25    
6.14      
58.11

12.23    
6.12      
57.63

7.89     
3.25      

0

Table 3 - Optimal and actual 28-day CETES rate paths: adjusted R-squared descriptive statistics 

 Recursive 
Thin 

Thick

2
1

22* )(])1()()[1( −−+−+−−= ttt iiyL φαππαφ

05.0,5.0 == φα

2.0,5.0 == φα

3.0,7.0 == φα

1.0,9.0 == φα

05.0,0.1 == φα

3.0,5.0 == φα
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Loss Function CETES

EW WA 28-day rate
Mean 

Std 
MSE

Mean 
Std 
MSE

Mean 
Std 
MSE 

Mean
Std 
MSE

9.62 
3.04 
26.60

10.65 
4.47 
31.02

10.62 
4.434 

30.61

7.89 
3.25 

0

8.73 
2.14 

6.33

8.45 
3.07 

3.93

8.45
3.06 

3.91

7.89 
3.25 

0

8.55 
2.31 

4.05

8.12 
3.12 

1.59

8.12
3.11 

1.59

7.89 
3.25 

0

8.56 
2.38 

4.23

8.25 
3.13 

1.86

8.24
3.12 

1.84

7.89 
3.25 

0

9.02 
2.60 
13.03

9.56 
3.20 
10.97

9.55
3.20 
10.93

7.89 
3.25 

0

9.35 
3.53 
24.08

10.95 
3.68 
23.26

10.93 
3.67 
23.08

7.89 
3.25 

0

Table 4 - Optimal and actual 28-day CETES rate paths: Cross Validation descriptive statistics 

Recursive 
Thin 

Thick 

2
1

2 2 * )(] )1 ()()[ 1 ( −−+− +−−= ttt iiyL φα π π α φ 

05 . 0 , 5 . 0 == φ α 

2 . 0 , 5 . 0 == φ α 

3 . 0 , 7 . 0 == φ α 

1 . 0 , 9 . 0 = = φ α 

05. 0, 0 . 1 == φ α 

3 . 0 , 5. 0 == φ α 
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Table 5. External validity for six different cases of loss function weights using several model selection criteria. 

     Cross-validation    BIC    adjusted R^2  

   
Sign test 
statistic 

Bootstrap p-
value Sensitivity Specificity 

Sign test 
statistic 

Bootstrap p-
value Sensitivity Specificity 

Sign test 
statistic 

Bootstrap p-
value Sensitivity Specificity 

EW  -- -- 0.41 0.67 -0.62 0.61 0.35 0.54 0.62 0.96 0.35 0.58 
WA  -0.31 0.27 0.41 0.67 -2.16 1.00 0.41 0.50 0.62 0.62 0.35 0.54  5.0=α , 

3.0=φ  BM  -2.16 1.00 0.59 0.54 -4.01 1.00 0.35 0.46 -4.32 1.00 0.41 0.54 
EW  -1.23 1.00 0.59 0.54 -1.23 0.94 0.35 0.54 0.00 0.98 0.41 0.50 
WA  -1.23 1.00 0.59 0.54 -2.16 1.00 0.41 0.46 0.31 0.87 0.35 0.46  5.0=α , 

2.0=φ  BM  -2.47 1.00 0.59 0.54 -4.32 1.00 0.29 0.46 -4.63 1.00 0.29 0.54 
EW  -3.09 1.00 0.47 0.54 -3.39 1.00 0.47 0.58 -2.47 1.00 0.47 0.63 
WA  -3.09 1.00 0.41 0.54 -2.47 1.00 0.29 0.46 -2.47 1.00 0.47 0.63  5.0=α , 

05.0=φ  BM  -5.25 1.00 0.65 0.38 -4.94 1.00 0.35 0.50 -4.94 1.00 0.41 0.63 
EW  -4.32 1.00 0.41 0.58 -4.94 1.00 0.53 0.58 -4.63 1.00 0.47 0.54 
WA  -4.32 1.00 0.53 0.58 -3.39 1.00 0.35 0.50 -4.63 1.00 0.47 0.54 0.1=α , 

05.0=φ  BM  -5.55 1.00 0.59 0.46 -4.01 1.00 0.41 0.54 -5.55 1.00 0.35 0.58 
EW  -0.93 0.98 0.41 0.58 -0.62 0.74 0.35 0.50 0.31 0.89 0.53 0.50 
WA  -0.93 0.97 0.41 0.58 -2.47 1.00 0.41 0.46 0.93 0.70 0.47 0.46 7.0=α , 

3.0=φ  BM  -2.16 1.00 0.59 0.50 -4.32 1.00 0.35 0.46 -4.32 1.00 0.41 0.50 
EW  -3.09 1.00 0.35 0.58 -4.94 1.00 0.41 0.63 -4.63 1.00 0.41 0.58 
WA  -3.09 1.00 0.35 0.58 -4.01 1.00 0.29 0.54 -4.63 1.00 0.41 0.58  9.0=α , 

1.0=φ  BM  -4.94 1.00 0.65 0.46 -4.94 1.00 0.35 0.50 -5.55 1.00 0.35 0.54 
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 Table 6. Effect of test-set class distribution on the MSE.  
  Out-of-sample MSE when using specified test-set distributions 
  (test-set distribution expressed as % of up-movements)  
  10 25 50 75 90  
        

EW 
1.27     

(0.27) 
1.45     

(0.35) 
1.50     

(0.36) 
1.54     

(0.32) 
1.59    

(0.23)  

WA 
1.36     

(0.28) 
1.41      

(0.33) 
1.45     

(0.36) 
1.53     

(0.31) 
1.60    

(0.23)  
 5.0=α , 
3.0=φ  BM 

4.40    
(0.93) 

3.94     
(1.00) 

3.37     
(1.00) 

2.83     
(0.86) 

2.34     
(0.58)  

EW 
3.99     

(1.55) 
3.86     

(1.76) 
3.66      

(1.70) 
3.63     

(1.50) 
3.50     

(1.04)  

WA 
3.99    

(1.54) 
3.97     

(1.71) 
3.72     

(1.73) 
3.59     

(1.47) 
3.47     

(0.98)  
 5.0=α , 

2.0=φ  BM 
6.72    

(1.36) 
6.12     

(1.45) 
5.34     

(1.44) 
4.58     

(1.20) 
3.96     

(0.83)  

EW 
29.36   
(9.00) 

30.67   
(10.89) 

31.30     
(12.43) 

33.54  
(10.90) 

34.33   
(7.60)  

WA 
28.73   
(9.13) 

29.95   
(11.52) 

30.74   
(11.88) 

32.20   
(10.49) 

33.77   
(7.44)  

 5.0=α , 
05.0=φ  BM 

26.52   
(4.57) 

25.23   
(5.11) 

23.08    
(5.15) 

21.18   
(4.39) 

19.97  
(3.04)  

EW 
27.31   
(8.12) 

25.70   
(9.05) 

22.83   
(9.21) 

20.18   
(7.49) 

18.36    
(5.30)  

WA 
27.40   
(8.26) 

25.18   
(9.23) 

22.42   
(8.85) 

20.11   
(7.42) 

18.08   
(5.23)  

0.1=α , 
05.0=φ  BM 

25.84   
(4.49) 

23.90   
(5.03) 

22.06   
(4.82) 

20.29   
(4.23) 

18.68   
(2.79)  

EW 
1.81    

(0.37) 
1.80     

(0.42) 
1.72     

(1.44) 
1.68     

(0.38) 
1.66    

(0.25)  

WA 
1.81     

(0.36) 
1.77     

(0.41) 
1.75     

(0.43) 
1.69     

(0.37) 
1.64    

(0.24)  
7.0=α , 
3.0=φ  BM 

4.69    
(1.01) 

4.25     
(1.05) 

3.60     
(1.07) 

2.97     
(0.91) 

2.51     
(0.63)  

EW 
13.97   
(4.47) 

12.47    
(4.95) 

10.52    
(4.95) 

8.57     
(4.28) 

7.26     
(2.86)  

WA 
13.77   
(4.60) 

12.61   
(4.99) 

10.73   
(4.87) 

8.82     
(4.09) 

7.18     
(2.80)  

 9.0=α , 
1.0=φ  BM 

13.94   
(2.59) 

12.95    
(2.90) 

11.76   
(2.80) 

10.25   
(2.32) 

9.36     
(1.62)  
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Figure 1. Scatter plot of models ranking under BIC and adjusted R2 for all 960 possible 

specifications of core inflation for the last period. 
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Figure 2. Scatter plot of models ranking under BIC and adjusted R2 for all 960 possible 

specifications of the output gap for the last period. 
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Figure 3. Variation of the real interest rate coefficient across specifications and time. 
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Figure 4. Variation of the U.S. output gap coefficient across specifications and time. 
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Figure 5. Variation of the imported inflation coefficient across specifications and time 

(BM stands for Best Model or recursive thin modeling). 




